Reading list

Jørgen Veisdal
2 min readJul 19, 2019

Babai, L. (1996). Paul Erdos just left town. Available at: https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2001-11

Bruno, LC. & Baker, LW. (1999). Math and mathematicians: The History of Math Discoveries around the World. UXL. Detroit, MI.

Erdos, P., 1932. Beweis eines satzes von tschebyschef. Acta Scientifica Mathematica, 5, pp.194–198.

Erdos, P. & Szekeres, G. (1935). A combinatorial problem in geometry. Compositio Mathematica 2. pp. 463–470.

Galvin, D. (2015). Erdos’ proof of Bertrand’s postulate. Working paper. Available at: https://www3.nd.edu/~dgalvin1/pdf/bertrand.pdf

Goldfeld, D. (2004). “The elementary proof of the prime number theorem: an historical perspective” (PDF). In Chudnovsky, David; Chudnovsky, Gregory; Nathanson, Melvyn (eds.). Number theory (New York, 2003). New York: Springer-Verlag. pp. 179–192.

Goffman, C. (1969). And What is Your Erdos Number? American Mathematical Monthly 76 (7) pp. 791.

Gowers, T. (2000). The Two Cultures of Mathematics. In V. I. Arnold; Michael Atiyah; Peter D. Lax; Barry Mazur (eds.). Mathematics: Frontiers and Perspectives. American Mathematical Society.

Hoffman, R. (1998). The Man Who Loved Only Numbers.

Israel Institute of Technology, 1997. The Anna and Paul Erdos Post-Doctoral Fellowship. Available at: http://jeffe.cs.illinois.edu/compgeom/files/erdos-postdoc.html

Kalbfleisch, J.D.; Kalbfleisch, J.G.; Stanton, R.G. (1970). “A combinatorial problem on convex regions”, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Congressus Numerantium, 1, Baton Rouge, La.: Louisiana State Univ., pp. 180–188.

Karpel, D. (2002). A Beautiful Mind. Haaretz. Available at: https://www.haaretz.com/1.5324065

Oakland University, 2015. Erdos Number Project Data Files. Available at: http://www.oakland.edu/enp/thedata/

O’Connor, JJ. & Robertson, EF. (2000). Paul Erdős. MacTutor History of Mathematics archive. School of Mathematics and Statistics, University of St Andrews, Scotland. Available at: http://www-history.mcs.st-and.ac.uk/

Schechter, B. (1998). My Brain Is Open : The Mathematical Journeys of Paul Erdos. p. 17

Seidenberg, A. (1959). A simple proof of a theorem of Erdős and Szekeres. Journal of the London Mathematical Society 34. pp. 352

Vázsonyi, A. (1996). Paul Erdos, The World’s Most Beloved Mathematical Genius “Leaves”. Pure Math. Appl. 7. pp. 1–12.

--

--

Jørgen Veisdal
Jørgen Veisdal

Written by Jørgen Veisdal

Editor-in-Chief at Cantor’s Paradise. Writer at www.privatdozent.co

Responses (1)